The Ubiquity of Smartphones, as Captured by Photographers

According to reports issued by several market-research firms, including Forrester Research, the total number of smartphone users worldwide will reach 3 billion this year—40 percent of the human population. For many, these versatile handheld devices have become indispensable tools, providing connections to loved ones, entertainment, business applications, shopping opportunities, windows into the greater world of social media, news, history, education, and more. And of course, they can always be put to use for a quick selfie. With so many devices in so many hands now, the visual landscape has changed greatly, making it a rare event to find oneself in a group of people anywhere in the world and not see at least one of them using a phone. Collected here: a look at that smartphone landscape, and some of the stories of the phones’ owners.

See all of the photos at the Atlantic Website

5 ways 5G will improve your business

The following post is part of our technology of the future series 

Read more about better network performance now

Today’s mobile users want faster data speeds and more reliable service. The next generation of wireless networks—5G—promises to deliver that, and much more. With 5G, users should be able to download a high-definition film in under a second (a task that could take10 minutes on 4G LTE). And wireless engineers say these networks will boost the development of other new technologies, too, such as autonomous vehiclesvirtual reality, and the Internet of Things.  

If all goes well, telecommunications companies hope to debut the first commercial 5G networksin the early 2020s. Right now, though, 5G is still in the planning stages, and companies and industry groups are working together to figure out exactly what it will be. But they all agree on one matter: As the number of mobile users and their demand for data rises, 5G must handle far more traffic at much higher speeds than the base stations that make up today’s cellular networks.

To achieve this, wireless engineers are designing a suite of brand-new technologies. Together, these technologies will deliver data withless than a millisecond of delay (compared to about 70 ms on today’s 4G networks) and bring peak download speeds of 20 gigabits per second (compared to 1 Gb/s on 4G) to users.

At the moment, it’s not yet clear which technologies will do the most for 5G in the long run, but a few early favorites have emerged. The front-runners include millimeter waves, small cells, massive MIMO, full duplex, and beamforming. To understand how 5G will differ from today’s 4G networks, it’s helpful to walk through these five technologies and consider what each will mean for wireless users.

Millimeter Waves

Today’s wireless networks have run into a problem: More people and devices are consuming more data than ever before, but it remains crammed on the same bands of the radio-frequency spectrum that mobile providers have always used. That means less bandwidth for everyone, causing slower service and more dropped connections.

One way to get around that problem is to simply transmit signals on a whole new swath of the spectrum, one that’s never been used for mobile service before. That’s why providers are experimenting with broadcasting on millimeter waves, which use higher frequencies than the radio waves that have long been used for mobile phones.

Millimeter waves are broadcast at frequencies between 30 and 300 gigahertz, compared to the bands below 6 GHz that were used for mobile devices in the past. They are called millimeter waves because they vary in length from 1 to 10 mm, compared to the radio waves that serve today’s smartphones, which measure tens of centimeters in length.

Until now, only operators of satellites and radar systems used millimeter waves for real-world applications. Now, some cellular providers have begun to use them to send data between stationary points, such as two base stations. But using millimeter waves to connect mobile users with a nearby base station is an entirely new approach.

There is one major drawback to millimeter waves, though—they can’t easily travel through buildings or obstacles and they can be absorbed by foliage and rain. That’s why 5G networks will likely augment traditional cellular towers with another new technology, called small cells.

Small Cells

Small cells are portable miniature base stations that require minimal power to operate and can be placed every 250 meters or so throughout cities. To prevent signals from being dropped, carriers could install thousands of these stations in a city to form a dense network that acts like a relay team, receiving signals from other base stations and sending data to users at any location.

While traditional cell networks have also come to rely on an increasing number of base stations, achieving 5G performance will require an even greater infrastructure. Luckily, antennas on small cells can be much smaller than traditional antennas if they are transmitting tiny millimeter waves. This size difference makes it even easier to stick cells on light poles and atop buildings.

This radically different network structure should provide more targeted and efficient use of spectrum. Having more stations means the frequencies that one station uses to connect with devices in one area can be reused by another station in a different area to serve another customer. There is a problem, though—the sheer number of small cells required to build a 5G network may make it hard to set up in rural areas.

In addition to broadcasting over millimeter waves, 5G base stations will also have many more antennas than the base stations of today’s cellular networks—to take advantage of another new technology: massive MIMO.

Massive MIMO

Today’s 4G base stations have a dozen ports for antennas that handle all cellular traffic: eight for transmitters and four for receivers. But 5G base stations can support about a hundred ports, which means many more antennas can fit on a single array. That capability means a base station could send and receive signals from many more users at once, increasing the capacity of mobile networks by a factor of 22 or greater.

This technology is called massive MIMO. It all starts with MIMO, which stands for multiple-input multiple-output. MIMO describes wireless systems that use two or more transmitters and receivers to send and receive more data at once. Massive MIMO takes this concept to a new level by featuring dozens of antennas on a single array.

MIMO is already found on some 4G base stations. But so far, massive MIMO has only been tested in labs and a few field trials. In early tests, it has set new records for spectrum efficiency, which is a measure of how many bits of data can be transmitted to a certain number of users per second.

Massive MIMO looks very promising for the future of 5G. However, installing so many more antennas to handle cellular traffic also causes more interference if those signals cross. That’s why 5G stations must incorporate beamforming.

Beamforming

Beamforming is a traffic-signaling system for cellular base stations that identifies the most efficient data-delivery route to a particular user, and it reduces interference for nearby users in the process. Depending on the situation and the technology, there are several ways for 5G networks to implement it.

Beamforming can help massive MIMO arrays make more efficient use of the spectrum around them. The primary challenge for massive MIMO is to reduce interference while transmitting more information from many more antennas at once. At massive MIMO base stations, signal-processing algorithms plot the best transmission route through the air to each user. Then they can send individual data packets in many different directions, bouncing them off buildings and other objects in a precisely coordinated pattern. By choreographing the packets’ movements and arrival time, beamforming allows many users and antennas on a massive MIMO array to exchange much more information at once.

For millimeter waves, beamforming is primarily used to address a different set of problems: Cellular signals are easily blocked by objects and tend to weaken over long distances. In this case, beamforming can help by focusing a signal in a concentrated beam that points only in the direction of a user, rather than broadcasting in many directions at once. This approach can strengthen the signal’s chances of arriving intact and reduce interference for everyone else.

Besides boosting data rates by broadcasting over millimeter waves and beefing up spectrum efficiency with massive MIMO, wireless engineers are also trying to achieve the high throughput and low latency required for 5G through a technology called full duplex, which modifies the way antennas deliver and receive data.

Full Duplex

Today’s base stations and cellphones rely on transceivers that must take turns if transmitting and receiving information over the same frequency, or operate on different frequencies if a user wishes to transmit and receive information at the same time.

With 5G, a transceiver will be able to transmit and receive data at the same time, on the same frequency. This technology is known as full duplex, and it could double the capacity of wireless networks at their most fundamental physical layer: Picture two people talking at the same time but still able to understand one another—which means their conversation could take half as long and their next discussion could start sooner.

Some militaries already use full duplex technology that relies on bulky equipment. To achieve full duplex in personal devices, researchers must design a circuit that can route incoming and outgoing signals so they don’t collide while an antenna is transmitting and receiving data at the same time.

This is especially hard because of the tendency of radio waves to travel both forward and backward on the same frequency—a principle known as reciprocity. But recently, experts have assembled silicon transistors that act like high-speed switches to halt the backward roll of these waves, enabling them to transmit and receive signals on the same frequency at once.  

One drawback to full duplex is that it also creates more signal interference, through a pesky echo. When a transmitter emits a signal, that signal is much closer to the device’s antenna and therefore more powerful than any signal it receives. Expecting an antenna to both speak and listen at the same time is possible only with special echo-canceling technology.

With these and other 5G technologies, engineers hope to build the wireless network that future smartphone users, VR gamers, and autonomous cars will rely on every day. Already, researchers and companies have set high expectations for 5G by promising ultralow latency and record-breaking data speeds for consumers. If they can solve the remaining challenges, and figure out how to make all these systems work together, ultra-fast 5G service could reach consumers in the next five years.

Warren Whitlock talks all things blockchain on CEO Money TV

Warren Whitlock is a digital business development strategist. In 2008, he wrote the first book about Twitter and Mobile Marketing, and the best selling “Profitable Social Media: Business Results Without Playing Games.” He is the host of Social Media Radio and speaks frequently about social media marketing, online publicity and marketing, social networking and building lifetime value for rapid growth.

Warren helps businesses transform to a new way of doing business using social media and online marketing and promotion to attract the right audience from the 2 billion people using the Internet. His breakthrough strategies to integrate mobile marketing, public relations and and lead generation with conversions to return on investment for lifetime value has helped hundreds businesses achieve rapid and continuing results from their marketing process.

Make your car a lockbox for deliveries, food, and more

You are carrying a lockbox around, wherever you drive. 

Watch this video about a awesome new way to get the stuff you want, where you want it.

I love how you can allow mobile access, without keys or expensive installation.

Phrame has run successful pilot with delivery.com, one of its partners for everyday item delivery inside of car trunks.

Delivery.com enables consumers to order food, alcohol, and home essentials via its online and mobile app platforms. The company also offers its customers laundry and dry cleaning on-demand, picked up and delivered directly to consumers by local providers.

By partnering with over ten thousand local restaurants, stores and dry cleaners, delivery.com is able to serve more than a million customers in dozens of cities across the United States. 

Phrame provides the smart license plate frame and app as a time-saving perk to employees of multiple companies for on-demand oil, gas and car washes to their parking lots. By partnering with delivery.com, Phrame can offer home essentials and laundry directly to employees’ cars, without interrupting the work day.

“There’s an overwhelmingly positive consumer response to in-car trunk delivery,” said Charlene Consolacion, Phrame’s CEO. “Consumers just don’t have the tool to become part of it. With Phrame, any car, built in any year, can become a temporary urban locker- receiving laundry, groceries and food for consumers.”

To complete laundry drop off during the pilot, delivery staff accessed car trunks via Phrame’s app to open the smart license plate frame enclosing car keys. Staff opened the car trunks, placed the items inside, and returned the keys back inside Phrame during a timed 90 second period.

Upon launch, consumers will have step-by-step insight into when their ordered items are dropped off inside of the car trunk via app notifications.

“Partnering with Phrame is an exciting way for us to provide even easier and more convenient solutions for our users,” said Nat Brogadir, VP of Business Development & Finance at delivery.com. “Users now have more free time while their home essentials, laundry and dry cleaning are brought directly to their car.”

Lear more about Phrame, visit www.phrame.com

To learn more about delivery.com, visit www.delivery.com